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Probabilistic formulae derived for P1 in the previous paper for general and special types of quintets are 
tested and slightly modified by suitable empirical factors. The reliability of the new expressions equals that 
of triplets. The method of complementary invariants is applied to the quintets in order to derive the sign of 
one and two-phase structure seminvariants. 
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1. Introduction 

In the preceding paper (Giacovazzo, 1977a; referred to 
as I) probabilistic formulae in P1 for quintet invariants 
of type: 

(~ = (~0h + (/)k + (~1 + (pro -- (ph + k + i + m (1) 

t~ = (P2h -- (~h + (~k + (~i -- (ph + k + 1 (2) 

(~  = (/0h + k + (~h  - k + (~01 - -  (~h  - -  (/0h + I ( 3 )  

were given in terms of the magnitudes of the first 
phasing shell. The aim of this paper is to explore the 
reliability of equations (I. 5), (I. 12) and (I. 15) from the 
following two points of view. 

(1) The probability theory used in (I) uses a G r a m -  
Charlier expansion of the characteristic distribution of 
the magnitudes belonging to the first phasing shell of 
the quintet invariants. By analogy with what occurred 
for quartets (Giacovazzo, 1975a, 1976) one may expect 
that probability values for quintets are overestimated. 
We wish here to modify in an empirical way the 
theoretical distributions in order to put on an absolute 
scale (i.e. on the same scale as the triplet relationships) 
the probability levels provided by the theory. 

(2) In P1 (2) and (3) are complementary invariants 
(Giacovazzo, 1977b) of tP2h and q~h+k+tPh-k via the 
quartets tph + ¢Pk + qh-- tph. k+~ and the triplet in- 
variant ~0~+tph--tph-~ respectively. Thus (2) and (3) 
may be usefully exploited in order to define ~02h and 
q~h + k + ~Oh- k" The method of complementary invariants 
for quartets was described in P1 by Giacovazzo (1975b) 
in order to calculate q~2h by means of the special 
quartets (~2h--(ph+(~k--(Ph+k. Here we apply the 
method to estimate in P1 one and two-phase sem- 
invariants by means of (2) and (3). 

2. General quintets: calculations 

Quintets and triplets may be used simultaneously in 
direct procedures provided that the signs of the triplets 
and quintets have the same reliability. To check this 
condition we pay attention to two relevant observa- 
tions: (a) the number of quintets for which all ten 
cross-magnitudes are in the set of measured reflexions 
is usually a small percentage of the observable quintets. 
Therefore a reliability check should be made also for 
quintets for which not all the cross-magnitudes are in 
the set. Quintets for which at least five cross-magnitudes 
are unknown are likely to be unreliable. In order to 
save computing time we have excluded them from our 
calculations. (b) the number of negative quintets is 
smaller than the number of positive: the ratio, however, 
is larger than for quartets. Their use therefore may be 
relevant in crystal structure solution. 

This suggests that we should make separate tests for 
quintets in which 6, 7, 8, 9 and 10 cross-magnitudes are 
in the measured set and for negative as well as positive 
quintets. 

As the probability that a triplet has a positive sign 
is given by: 

P+ -~0-5 +0.5 tanh (IEhEkEh+d/l/N), 

one may compare the reliabilities of triplets and 
quintets giving the number and percentage of correct 
ones above the corresponding values of the arguments 
of the hyperbolic tangent. In order to check (I. 5) as a 
function of structural complexity we have tested five 
models with N = 20, 60, 70, 100, 140, and a real struc- 
ture (C47H3oN604Br2; Fanfani, Nunzi, Zanazzi & 
Zanzari, 1974). 

The sign probabilities provided by (I. 5) proved the 
more overestimated (compared with those of triplet 
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Table 1. Number of relations (n.r.) and percentage of correct relations 

6 cross-vectors in set 

of triplets and quintets for a 140-atom 
model structure 

Negative Positive 
Tanh Triplets quintets quintets 

arg n.r. ~ n.r. .% n.r. ~o 

0"2 613 93 13 69 58 76 
0"4 613 93 1 100 37 78 
0-6 613 93 19 89 
0'7 569 93 14 100 
0"9 392 97 3 I00 
1"0 320 97 1 100 
1"2 208 98 1 100 
1"5 95 96 
1"6 64 100 
1"8 31 100 

7 cross-vectors 

Negative 
quintets 

n.r. 'Yo 
37 56 

3 100 

in set 8 cross-vectors in set 

Positive Negative Positive 
quintets quintets quintets 

n.r. Vo n.r. ~, n.r. '~, 

59 74 23 30 30 77 
41 83 1 100 18 72 
29 I00 1 100 9 100 
22 100 9 I00 
13 100 4 100 
7 100 3 100 
2 100 

9 cross-vectors in set 

Negative Positive 
Tanh quintets quintets 

arg n.r. ~o n.r. ~o 
0"2 6 83 10 90 
0"4 2 I00 9 90 
0"6 1 100 6 100 
0"7 4 100 
0"9 4 100 
1"0 1 100 
1"2 1 100 

Negative 
quintets 

n . r .  ~ o  

7 71 

10 cross-vectors in set 

Positive Negative 
quintets quintets 

o / n.r. ~o n.r. /o 
10 100 86 55 
5 100 7 100 
5 100 1 100 
5 100 
2 100 

6-10 cross-vectors in set 

Positive 
quintets 

n . r .  ~/o 

167 78 
110 81 
68 97 
54 100 
26 100 
14 100 
4 100 

relationships) the more N decreases. A solution seemed 
to be to retain the basic probabilistic expression (I. 5) 
and rescale probability values by a suitable empirical 
factor. Thus we have rescaled the argument of the 
hyperbolic tangent in (I. 5) by dividing it by (1 + 6/l/N). 

Three further modifications to (I.5) proved satis- 
factory. (1) The term D/8N was always negligible com- 
pared with unity or C/2N. We have thus assumed D = 
0. (2) (I. 5) has a discontinuity when 1 + C/2N + D/8N = 
0. The behaviour has no physical meaning and occurs 
because the Gram-Charl ier  expansion of the char- 
acteristic function has been used for deriving (I. 5). 
Then the probability distribution itself is an asympto- 
tic series cut-off to order 1/NVN. To avoid large 
probability values we have assumed C = 0  when 
C < 0 .  (3) Negative quintets seem more accurately 
defined than positive ones marked by the same prob- 
ability value. Thus we have replaced in (I. 5) A + B by 
A + B - 1 .  

In Tables 1 and 2 the outcome is shown for the two 
models with N = 70, 140, in Table 3 for the real struc- 
ture. The triplets are found within the group of 250 
strongest reflexions, the quintets within the strongest 
50. For brevity, the check on our modified form of(I. 5) 
as a function of the number of known cross-magnitudes 
is shown only for the model structure with N =  140. 
For the real structure we have assumed N=tr3/a 2. 
No advantage has been noted with more sophisticated 
formulae such as (I. 5'). 

Tables 1 and 3 suggest that quintet reliability levels 
are comparable with those of triplets. We have then 
looked for quintets within the set of 80 strongest 
reflexions. Even though the quintet reliability is still 

comparable with that of triplets, some meaningful 
differences occur. Our modified form of (I. 5), in fact, 
does not hold for a small number of quintets char- 

Table 2. Number of relations (n.r.) and percentage of 
correct relations of triplets and negative and positive 

quintets for a 70-atom model structure 

Quintets are found within the 50 strongest reflexions. 

Tanh 
arg 

0"4 
0.6 
0"8 
1.1 
1"3 
1.5 
1.6 
2.4 

Negative Positive 
Triplets quintets quintets 

o /  ~ , n.r . . . .  o n.r. to n.r. %o 
1312 86 105 83 376 81 
1271 87 35 94 246 89 
878 90 16 100 176 91 
318 93 2 100 94 97 
157 97 59 100 
84 99 48 100 
53 100 38 100 

6 100 13 100 

Table 3. Number of relations (n.r.) and percentage of 
correct relations of triplets and negative and positive 

quintets Jbr the real structure 

Quintets are found within the 50 strongest reflexions. 

Negative Positive 
Tanh Triplets quintets quintets 
arg n.r. ?'0 n.r. ?'o n.r. ",o 
0'4 1273 99"3 26 84"6 964 99"7 
0"6 1273 99"3 13 100 805 99"9 
0"7 1273 99"3 10 100 697 99"9 
0"9 1176 99"3 7 100 508 99"8 
1"0 1027 99"4 6 100 420 100 
1"4 431 100 2 100 151 100 
2"0 84 100 1 100 22 100 
3"2 6 100 1 100 
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acterized by large positive values of the argument of the 
hyperbolic tangent. We give in Table 4 the outcome 
corresponding to the model with N =  140: it may be 
compared with the two last columns of Table 1. For 
any quintet ten tripoles may be formed, one for every 
cross-vector, of type: 

t / )  - -  ( p h  -~- ( p k  Jr- q)1-3t- (p ro  - -  ( p h  + k + 1 + m 

I ~ T  - -  - -  ~ h  - -  ( P k  "Jf- ( P h  + k 

¢ ~ Q - -  - -  (-Pl - -  (Pro "~- ( -Ph+  k + I + m - -  ( P h +  k .  

Always • = 4'r + ~Q. If ~ r  is marked by a large value of 
ARG=IEhEkEh+d/[/N, but is really equal to 7t, the 
estimate of • could be undetermined, especially if a 
large percentage of cross-magnitudes are not in the set 
of measurements. Referring to the model with N = 140, 
four triplets with A R G >  1.20 are negative (Table 1): 

IEv-l-fErz,rE1381=2.60 x 2-43 x 2.94 A R G =  1-57 

IE757E~zrEto791 =2.60 × 2-43 x 2.94 ARG = 1-57 

IE75~El~EI381 =2.60 x 2.42 × 2-94 ARG = 1.56 

IE9~2E-f59E~a--fl =2.97 × 2.83 x 2-19 A R G =  1.56. 

Three of these triplets are involved in five quintets with 
only seven cross-vectors in the set and are wrongly 
defined positive by (I. 5). Defining by ARGU the argu- 
ment of the hyperbolic tangent in our modified form of 
(I. 5) we have 

3. The sign of E2h in PI via the method of quintet 
complementary invariants 

Quintet complementary invariants such as (2) may be 
estimated in P]- by means of (I. 12). In accordance with 
the considerations of §2 we have modified its theoret- 
ical expression: (a) the argument of the hyperbolic 
tangent has been divided by (1 +6/~/N); (b) we have 
assumed D'=O; (c) we have assumed C'=O when 
C '<0 .  

If the value of (2) is fixed, the sign of E2h may be 
derived provided the sign of the quartet ~Ph + (Pk + (-Pl- 
(Pb+k+~ is known. We have estimated the sign of the 
quartet by means of the probabilistic formulae given by 
Giacovazzo [1976, equations (11) and (12)] and by 
Green & Hauptman (1976a). We have excluded from 
our calculations quintet complementary invariants 
for which one of the following conditions occurs" 
(1) one of the probability values for the quintet or the 
corresponding quartet is >0.30 and <0.70; (2) the 
quartet has only one cross-vector in the set of meas- 
urements. 

Conditions (1) and (2) arise because it seemed prefer- 
able to require high probability levels both for quintets 
and quartets. Considering that the sign of the quartet 
does not depend on that of the quintet we may write: 

P+(EEh) = PQPq +(1 -- PQ) (1 -- Pq) 

Et 1,3,5E 17TEI-f,7,4E7-f--fE~-y7 

E11,3,5E1 o, 1, i Ex-r,'r,4E757Eg-zv 

gs~ 1 E~-f oE~8 7 E7.5~ E l ~r6 

Eo31E 17TEE32Es27 ETl-,g,g 

E 11,2,TEs-2gE252E~/11 ETa 6 

A R G U = I ' 1 7  

ARGU = 1"50 

ARGU =0-98 

ARGU =0-91 

ARGU =0"93. 

These considerations suggest limiting the set of the 
strongest reflexions within which the quintets are to be 
found, unless a condition is fixed which requires a very 
large percentage of cross-reflexions in the set of meas- 
urements. 

where PQ and Pq a r e  the sign-probability values for the 
quintet and the quartet respectively. 

We note now that the sign of Ezh may be generally 
fixed by means of more than one quintet complementary 
invariant (2): in fact k and I are free vectors which may 
vary over reciprocal space. A measure of the overall 
probability that EEh has a positive sign is given by: 

1-l,pf'~- l 
P+(E2h)-- 1+ ~ ]  , (4) 

where P7 (Pf)  is the probability of a positive (negative) 
sign for Ezh as calculated via the jth quintet comple- 
mentary invariant. 

Table 4. Number of relations (n.r.) and percentage of correct quintet relations for 70 and 140-atom model structures 

Quintets are found within the 80 strongest reflexions. 

N = 70 

Negative Positive 
Tanh quintets quintets 

o ,  o,  arg n.r. /,, n.r. ,'O 

0"4 681 78 2492 82 
0'5 336 81 1932 84 
0"6 170 80 1528 87 
0"8 62 81 960 91 
1"1 16 81 506 95 
1"3 4 100 322 98 
1"5 3 100 211 98 
1"6 2 100 174 98 
2.0 92 100 

Negative 
quintets 

n . r .  ° o 

110 93 
28 100 

8 100 
1 100 

N = 140 

Positive 
quintets 

n . r .  % 

1288 89 
958 90 
739 91 
378 94 
121 98 
47 98 
15 100 
8 100 
1 100 
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A last observation is that (4) postulates that each 
Pj~ is independent of the others. Thus we expect that 
(4) will overestimate the sign probability for E2h. 

We have checked the method with the models with 
N =  70, 140, and the diffraction data of the real struc- 
ture: the outcome is shown in Tables 5--7; P+ is given 
by (4), NQ is the number of quintets which really fix 
the sign of E2h. The E~ formula fails in three cases: 
(4) suggests for them the correct negative value only in 
two cases. Our experience is that quintets with nega- 
tive values are always more badly estimated than those 
with positive values of E2h. In conclusion, the pro- 
cedure seems poor for defining the sign of the one- 
phase structure seminvariants. This behaviour results 
because the method requires that quartet and quintet 
probability theories contemporaneously and with large 
accuracy recognize the corresponding signs. Further 
improvements of the quartet and quintet theories will 
surely be able to make our method more useful. 

4. The sign of E h + k in PT v/a the method of 
complementary quintet invariants 

In accordance with the preceding paragraphs we have 
used a modified form of (I. 15) in order to estimate 
quintet complementary invariants such as (3). In 
particular: (a) the argument of the hyperbolic tangent 
has been divided by (1 + 6/I/N); (b) we have assumed 
D"= 0; (c) we have assumed C"= 0 when C"< 0. 

If the sign of (3) is fixed, the sign of Eh + kEh-k may 
be derived provided the sign of the triplet ~0~ + ~Oh -- ~Oh + I 

Table 5. List of pairs E 2 h  , Eh in the real structure which 
form quintets E2h , Eh, Ek, Ej, Eh+k+~ with IEI>I'50 

2h E2h Eh P÷ N Q  

2,~,12 1"71 - 1"97 0"99 21 
2,T~,2 1"65 1"81 0"99 73 
642 1"64 - 2"79 0"99 237 
260 1"63 - 1"55 0"99 78 

12,2,74 1.61 - 2 . 5 3  0"99 105 
4 ~  1"52 - 2.53 0"99 229 
222 - 1"51 2.07 0"38 4 

Table 6. List of pairs E2h , Eh in the model with N = 70 
which form quintets Ezh, Eh, Ek, E~+k+~ with [E[> 1"50 

2h E2h Eh P+ NQ 
24~ 2"48 - 1"52 0"99 15 
4~6 -2"01 - 1"78 0"99 18 
40~ - 1"70 1"90 0"29 1 
08]  1"65 - 2"07 0"89 5 

Table 7. Outcome for the only E2h value in the model 
with N =  140 which forms quintets E z h  , Eh ,  Ek,  El ,  

Eh+k+l with )El> 1"80 

2h E2h Eh P+ NQ 
482 1"84 - 1"92 0"83 3 

is known. As the probability that a triplet is positive is 
given by" 

Pr=0 .5  +0.5 t a n h  ([EiEhEh+ll/q//N) 

Table 8.23 values of P + for a model structure in P1 with 
N = 70 atoms in unit cell, arranged in descending order of 

expected accuracy 

h+k Eh+k h - k  Es-k P+ NQ 
413 2"23 457 2"08 0"908 4 
~;25 -2 "85  ~61 - 1"90 0"879 4 
i14  2"35 176 1"85 0"870 3 
028 2"61 0~2 2"34 0"869 2 
'2--41 -2 "29  ~;43 - 1"93 0"867 3 
552 2"23 516 2"08 0"862 3 
"2-2[2 2"48 ~ 6  2"01 0"839 2 
066 - 2"89 ~42 2"48 0"211 2 
~08 -2 "62  294 -2"11  0"756 1 
37~6 - 2"85 302 - 1"90 0"747 2 
568 - 2"31 722 - 2"02 0"744 2 
115 2"02 573 - 1"95 0"743* 1 
721 1 "94 7~;3 1"90 0"729 2 
5~1 2"15 5;~7 -2"01 0"291 1 
716 - 1"98 534 1"92 0"706* 2 
141 - 2"63 725 - 2"08 0"702 1 
~08 - 2"62 ~]2 1"87 0"350 1 
22[2 1"93 ~02 1"90 0"643 1 
]84  - 2"08 22[2 1"93 0"364 1 
1 ~4 - 2"47 i26  - 1"92 0"629 1 
023 3"46 645 - 3"30 0"375 1 
1~4 - 2"47 57~4 - 1"85 0"390* 1 
038 - 2"62 ~ 6  2"01 0"397 1 

Table 9. 31 values of P + for a model structure in P i  with 
N = 140 atoms in unit cell, arranged in descending order 

of expected accuracy 
h+k Eu+s h - k  Eh-k P+ NQ 
10,~,1 -3"13  8211 -3"13  0"992 6 

188 2"32 T~4 2"30 0"982 5 
10,2,9 2"32 ]'0,4,3 2"30 0"968 4 

8gl 2"46 ~89 2"28 0"967 5 
i0,5,1 - 2"43 873 - 2"42 0"967 6 

120 2"45 7,2,10 2"28 0"964 6 
895 2"30 T0,4,3 2"30 0"947 2 

10,2,9 2"32 895 2"30 0"933 3 
10,3,9 -2"61 g77 - 2 " 6 0  0"919 3 

8gl 2"46 10,71,1 2"45 0"916 1 
837 -2"57  g35 -2"03  0"910 3 

T0,7,5 - 2.57 837 - 2.57 0.890 2 
10,~,1 2.45 ~89 2.28 0.884 3 
T16 - 2 . 5 7  1~6 - 2 - 0 3  0.827 2 
425 - 3.34 ~-69 - 2.20 0.807 3 
5~1 - 2 . 4 7  I23 -2 .11  0-805 3 

1-],2,1 - 2 - 6 7  5,2,11 - 2 . 3 6  0.800 3 
313 2-19 153 1.99 0.768 2 
~39 2.67 739 2.21 0.759 2 
~;,i, 11 2.98 ;~,3,11 2.68 0-691 1 

11,7,8 2.49 756 2.49 0.685 2 
i68  -2 .71  120 2.45 0.676* 2 
809 - 2.70 10,~, 1 2.45 0.674* 2 
(;18 3.06 816 - 2 . 0 5  0.633* 1 
359 3.06 T55 - 2.05 0.633* 1 
727 3.51 517 2-05 0-630 1 

10,~,9 2-94 g35 - 2.03 0-370 1 
9~2 2.97 1--i,~,2 - 2.91" 0-617* 1 
138 2.94 lg6 - 2 . 0 3  0.383 1 

10,0,3 2.25 g713 2.16 0.603 1 
Ti,5,8 2.34 5~8 - 1.97 0.403 1 
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Table 10. 20 values of  P + for the real structure arranged 
in descending order of  expected accuracy 

h + k  Eh+ k h - k  Eh-k P+ NQ 
026 2"00 ~ 4  1"87 0"996 6 
4,1,10 1"89 10,5,8 1"87 0"990 5 
~03 - 2"60 ~;09 1"86 0"021 3 
~,74,10 - 1"74 0,0,12 - 1"69 0.976 4 
5--71 2" 13 133 2"09 0"959 4 
300 2"38 942 1"90 0"948 2 
~03 - 2"60 /0,2,1 - i "93 0"932 3 
481 - 2"06 241 - 1-86 0.931 3 
T,7~,ll -2.30 125 1"79 0"101 3 
g37 -2"16 491 - 1"68 0"871 2 
739 -2 '13 377 - 1.87 0.862 3 
221 - 2"53 663 - 1"68 0"840 2 
023 2-81 ]-~,4,1 2-03 0"831 2 
67~2 - 2-04 ~4  1"87 0" 180 2 
773 -2"15 739 -2"13 0"819 3 
321 -2-79 163 - 1"66 0.817 1 
621 - 2"47 i0,2,1 - 1"93 0"771 1 
6C)8 1"74 6,7,12 1"68 0.771 2 
609 1"86 ~63 - 1"68 0"231 1 
666 2"29 0,0,12 - 1"69 0"273 1 

we may write: 

P + (Eh + kEh- k) = PoPT + (1 - Po.) (1 - PT). 

Only quintets for which P~ or P~ >0.60  are used in 
calculations. Since I is a free vector which may vary 
over reciprocal space, more quintets can contr ibute  to 
fix the sign of Eh+kEh-k. In accordance with §3, an 
overall sign probabil i ty may be obtained by: 

n2pj_,~_ 1 
P+(Eh+kEh_k) = 1 + n T  f,} (5) 

A final observat ion is that  every two-phase seminvar- 
iant will be defined on average by a number  of useful 
quintet complementa ry  invariants smaller than those 
able to fix the sign of E2h. This is because for every 
two-phase seminvariant  the set of quintets is con- 
structed by means of only one free vector. 

Tables 8-10 list two-phase seminvariants  whose 
values are determined by means of (5). P+ is given by 
(5), N Q  is the number  of quintets which fix the sign of 
Eh+kEh_  k. We have marked  by an asterisk the sem- 
invariants for which the method fails. We note that  
negative seminvariants  are recognized with good 

accuracy in all three structures. Our  method seems 
thus able to s t renghthen the sign indications given by a 
different approach  (Giacovazzo,  1974, 1977c, d; Green 
& Haup tman ,  1976b). 

Conclusion 

Some basic probabilistic formulae for quintets ob- 
tained by Giacovazzo (1977a) are slightly modified by 
empirical factors. The experimental  tests are satis- 
factory and suggest the use of quintets in direct pro- 
cedures for phase solution. In particular,  negative 
quintets with high reliability can be obtained in large 
symmorphic  structures where negative invariants play 
an impor tan t  role. Their  use is therefore advisable not 
only to recognize the correct solution in mult isolution 
procedures,  but also in the initial stages. Fur thermore ,  
our  probabilistic approach  enables us to obtain, by the 
complementary  invariants  method,  the signs of one 
and two-phase seminvariants.  In particular,  two-phase 
negative seminvariants  are recognized with good 
accuracy in large structures so that  their use in the first 
stages of direct procedures is advisable. Our  conclu- 
sion is that  quintet  relations can assist triplets and 
quartets  to solve the phase problem. 

We are grateful to C N U C E  of Pisa for the facilities 
provided for the calculations. 
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